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This paper aims to propose a novel approach to classify acoustic emission (AE) signals
deriving from corrosion experiments, even if embedded into a noisy environment. To
validate this new methodology, synthetic data are first used throughout an in-depth
analysis, comparing Random Forests (RF) to the k-Nearest Neighbor (k-NN) algorithm.
Moreover, a new evaluation tool called the alter-class matrix (ACM) is introduced to
simulate different degrees of uncertainty on labeled data for supervised classification.
Then, tests on real cases involving noise and crevice corrosion are conducted, by pre-
processing the waveforms including wavelet denoising and extracting a rich set of fea-
tures as input of the RF algorithm. To this end, a software called RF-CAM has been
developed. Results show that this approach is very efficient on ground truth data and is
also very promising on real data, especially for its reliability, performance and speed,
which are serious criteria for the chemical industry.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Acoustic Emission (AE) is the transient elastic sound waves produced when a material undergoes stress, caused by the
release of localized stress energy. AE can typically be detected in frequency ranges within 50 kHz to 1 MHz, and one major
application is health monitoring of structural materials (bridges, pressure containers, pipe lines, etc.). Different kind of
evolving damages can be detected by AE technique, but special attention was paid to localized corrosion processes during
the last two decades [1–5]. In these works, specific AE sources associated to corrosion damage were identified to be gas
evolution (mainly H2 produced by cathodic reactions), corrosion products formation and rupture, and stress corrosion
cracking initiation and propagation. Localized corrosion phenomena, such as crevice corrosion, mainly affect passive metals
and alloys in chemical and oil industries. Corrosion degrades the useful properties of materials and structures including
strength, appearance and permeability to liquids and gases. Thus, real time detection and understanding the electro-
chemical processes involved in these phenomena are fundamental when it comes to implement a forward-looking strategy
of operational maintenance of facilities. Over the past eighteen years, several studies have been conducted regarding the
identification and the classification of different types of corrosion. In 1996, Barton et al. [6] developed an artificial neural
network (ANN) to identify the onset and classify the type of localized corrosion from electrochemical noise (ECN) spectra. In
2004, Van Dijck et al. [7] presented a pattern recognition system to classify corrosion processes from ECN time series using
the continuous wavelet transform (CWT), a Bayesian classifier and a genetic algorithm. In 2009, Piotrkowski et al. [8] applied
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wavelet analysis (WA) and bispectrum analysis (BA) to AE signals for damage identification and evaluation of corroded
galvanized steel whereas Griffin et al. [9] performed both Short-Time Fourier Transform (STFT) and Wavelet-Packet
Transform (WPT) on AE signals extracted during burn and chatter anomalies, using genetic programming as a classifier
algorithm. In 2010, Zhao et al. [10] classified AE signals in composite laminates using wavelet packet analysis (WPA) and
support vector machine (SVM). In 2011, Van Dijck and Van Hulle [11] used a hybrid filter-wrapper genetic algorithm and a
naïve Bayes classifier to identify the absence of corrosion, uniform corrosion, pitting and stress corrosion cracking. In 2012,
Yu and Zhou [12] proposed a classification method of AE signals deriving from oil storage tank damage, combining SVM and
an optimized grid search algorithm whereas Li et al. [13] studied the classification of AE signals of 304 stainless steel during
stress corrosion process based on K-means clustering. Except the latter work, all of these researches are based on supervised
learning algorithms but, to our knowledge, no attempt using decision trees has been made so far.

Considering the crevice corrosion process, emitted bubbles coming from chemical reactions generate AE activity, which
can be recorded by sensors located on the surface of the specimen. Since AE signals associated to crevice corrosion are
characterized by low energy content, it is very difficult to separate those signals from the environmental noise [14]. Thus, an
in-depth work has been realized to preprocess the corresponding waveforms and a major motivation was to find the most
relevant set of features. Chosen classification algorithm must be fast, reliable and not very sensitive to a mislabeled learning
database (due to real-time and reliability industrial constraints). Moreover, it is preferable to provide a confidence level for
the final decision.

This paper is organized as follows: waveform preprocessing and some details about the extracted features are given in
Section 2. In Section 3, the RF algorithm is explained before an in-depth analysis is performed on ground truth data in
Section 4. Classification results on real cases involving noise and crevice corrosion are shown in Section 5. Finally, some
conclusions are drawn and improvements will be proposed.
2. Feature extraction from preprocessed waveforms

2.1. Waveform preprocessing

This important preliminary step is performed on waveforms directly acquired from sensors. The motivation here is to
normalize those AE signals for consistent comparison. It is possible to discard useless information, numerically store the
waveforms for further analysis and denoise them. The waveform preprocessing consists in the four following steps.

2.1.1. Pre-trigger removing
Pre-trigger removing simply deletes samples from the waveform corresponding to the very first points of the acquisition

process. The pre-trigger value to be removed is totally customizable, depending on experiment conditions. This step is useful
to remove digital noise from acquisition.

2.1.2. Tail cutting
Tail cutting resides in dynamically cutting the end of the waveform according to an energy criterion. For each point in the

waveform, the cumulative energy computed from the beginning is compared to the energy contained in a 10 μs length
window following that point. If this energy is less than a certain threshold T (in %) of the cumulative energy, then the
corresponding point represents the end of the signal (Fig. 1).

This step is especially useful when it comes to remove the “zero-padding” which may have been applied at the end on
some waveforms during the acquisition process (for length normalization purpose), thus removing useless information.
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Fig. 1. Illustration of the tail cutting process on a waveform.
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2.1.3. Shape preserving interpolation (SPI) resampling
SPI resampling is based on the Piecewise Cubic Hermite Interpolating Polynomial (PCHIP) technique [15,16] and the

Weierstrass Approximation Theorem [17]. The motivation behind the use of this specific resampling technique is that, after
tail cutting is applied, each waveform has a different number of points, thus it is not possible to numerically store them all in
a matrix for further processing. Thanks to the SPI resampling, the original sampling frequency can be recovered and the full
preprocessed waveforms can be stored.

2.1.4. Wavelet denoising
Wavelet denoising [18] can also be performed and uses the wden function from the Matlab Wavelet Toolbox. Specific

parameters have been set: the universal threshold of Donoho [19] is used to select the wavelet coefficients in combination
with a soft thresholding being rescaled using level dependent estimation of level noise. Decomposition is made at level
3 with the symmlet8 as the mother wavelet.

An example of a full waveform preprocessing is depicted in Fig. 2.

2.2. Extracting features

The final decision process must be as fast and reliable as possible. Thus, each waveform is turned into a compact representation
through a set of 30 features, in time, frequency and wavelet domains (Table 1). Besides common features such as amplitude,
duration, energy, rise time, partial powers or peak frequency, other features derive from speech recognition and sound description
studies [20]. Wavelet features are actually a specific set of features using wavelet packet energy [21,22]. The energy percentage of
the terminal nodes of the wavelet packet tree is computed, leading to 23 ¼ 8 wavelet packet energy features.
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Fig. 2. From top to bottom: original, pre-trigger removed, tail cut, SPI resampled and final wavelet denoised waveforms.



Table 1
The set of the 30 features. Those features are recalculated from waveforms. “L”¼Low-pass filter, “H”¼High-pass filter. Thus, “LLH” consists
in cascading two low-pass filters and one high-pass filter.

ID Feature Unit

Time Features
R1 Amplitude V
R2 Duration s
R3 Energy V2

R4 Zero-crossing rate %
R5 Rise time s
R6 Temporal centroid s
R7 Temporal decrease Vs�1

Frequency Features
R8 Partial Power 1 ð½50;100� kHzÞ %
R9 Partial Power 2 ð½100;200� kHzÞ %
R10 Partial Power 3 ð½200;250� kHzÞ %
R11 Partial Power 4 ð½250;400� kHzÞ %
R12 Frequency centroid Hz
R13 Peak frequency Hz
R14 Spectral spread Hz
R15 Spectral skewness –

R16 Spectral kurtosis –

R17 Spectral slope Hz�1

R18 Roll-off frequency Hz
R19 Spectral spread to peak Hz
R20 Spectral skewness to peak –

R21 Spectral kurtosis to peak –

R22 Roll-on frequency Hz
Wavelet Features

R23 Wavelet Packet Energy 1 (LLL) %
R24 Wavelet Packet Energy 2 (LLH) %
R25 Wavelet Packet Energy 3 (LHL) %
R26 Wavelet Packet Energy 4 (LHH) %
R27 Wavelet Packet Energy 5 (HLL) %
R28 Wavelet Packet Energy 6 (HLH) %
R29 Wavelet Packet Energy 7 (HHL) %
R30 Wavelet Packet Energy 8 (HHH) %

N. Morizet et al. / Mechanical Systems and Signal Processing 70-71 (2016) 1026–1037 1029
3. Supervised classification using Random Forests

Random Forests are an ensemble learning method for supervised classification (and regression) that operate by con-
structing a multitude of decision trees during training, each capable of producing a response (vote) when presented with a
new set of features during testing. The algorithm was originally developed by Leo Breiman and Adele Cutler in 2001 [23].
The term Random Forests is their trademark and comes from random decision forests that was first proposed by Tin Kam Ho
of Bell Labs in 1995 [24]. The method merges two important ideas : Breiman's “bagging” [25] and the random split selection
of features, introduced independently by Ho, Amit and Geman [26] and Dietterich [27] in order to construct a collection of
decision trees with controlled variation. Bagging (bootstrap aggregation) consists in building multiple training subsets by
sampling with replacement (also known as bootstrapping [28]) from the original training set. It reduces the variance of the
ensemble and smoothes decision boundaries. One tree is constructed per bootstrap but only 2/3 of a bootstrap (the In-Bag
data) are actually used to build the tree, the remaining 1/3 (the Out-Of-Bag (OOB) data) are used to get an unbiased estimate
of the classification error of the corresponding tree (Fig. 3). The second randomness phenomenon is introduced through the
random split selection idea : at each node of the tree, only a random subset of all features is considered. It makes tree
construction less greedy and gives seemingly weak features a chance to get into the tree and to become helpful in con-
junction with other features. During the testing phase, each AE signal is ran down each tree of the Forest, leading to T votes.
The final decision can be obtained two different ways. The first one is simply the usual majority voting (MV) rule. In this
work, another decision rule is introduced called security voting (SV) rule. In this special rule, one given AE signal is assigned
to a specific class if more than 70% of the total number of trees voted for that class.

The whole approach combining the waveform preprocessing and the RF supervised classification has been implemented
into the software RF-CAM (“Random Forests Classification for Acoustic emission Monitoring”).
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Fig. 4. Original Training and Testing Sets. Illustration of the data in the two-dimensional plane: threshold crossings (Counts) versus Amplitude (dB).
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4. Ground truth data tests

4.1. The data

Ground truth data come from the synthetic dataset collected in [29]. Those data represent four clearly identified classes
(2000 signals per class) and are described with a set of M¼9 features. A Training Set is built, comprised of 70% of those data
(5600 signals taken at random), the remaining 30% (2400 signals) constitute the Testing Set (Fig. 4).
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4.2. The alter-class matrix (ACM)

In order to test the robustness of both algorithms regarding mislabeled data and the introduction of noise and outliers, a
new evaluation tool called the alter-class matrix (ACM) is presented. The ACM is a particular n-square matrix designed to
alter the original training set in order to simulate uncertainty on labeled data for supervised classification. It is based on a
doubly stochastic matrix [30] and uses the 1-norm scaling algorithm from [31]. The ACM contains integer entries and has its
sums along columns and rows equal to S¼100 (see the following equation):

ACMðn;nÞ ¼

a1;1 a1;2 ⋯ a1;n
a2;1 a2;2 ⋯ a2;n
⋮ ⋮ ⋱ ⋮

an;1 an;2 ⋯ an;n

0
BBBB@

1
CCCCA

Xn

i ¼ 1

ai;j ¼
Xn

j ¼ 1

ai;j ¼ 100; 1o irn;1o jrn ð1Þ

Each entry ðai;jÞ of the ACM denotes a percentage of waveforms from the original class Cj. The diagonal values of the ACM
are set according to a trust factor which reflect the confidence level given to each original class (a trust factor equals to 100
means the corresponding class is not altered). Also, the mean μdiag and the standard deviation σdiag of the diagonal values are
imposed such that μdiag ¼ 75% of the trust factor and σdiago3 respectively.

Eq. (2) shows an example of an ACM for a 4-class problem, given for a trust factor equals to 80 ðμdiag ¼ 79; σdiag ¼ 2:94Þ:

ACMð4;4Þ ¼

79 2 15 4
7 83 2 8
5 9 76 10
9 6 7 78

0
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1
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The first row of ACMð4;4Þ must be read as follows: C1 becomes C1alter , composed of 79% of waveforms from C1, 2% from C2,
15% from C3 and 4% from C4. This technique allows the simulation of different degrees of uncertainty regarding the labeled
data of the original training set from one single matrix. Forcing the data to be mislabeled using the ACM can also be seen as a
random and progressive introduction of noise and outliers in the original data (Fig. 5).

4.3. The tests

In all these tests, RF is compared to the widely used and efficient k-Nearest Neighbor (k-NN) algorithm [32]. The fol-
lowing parameters have been set for the algorithms:

� Random Forests: The number of trees T¼200 has been set using the point where the OOB error rate stabilizes [23], the
number of randomly selected features has been set to the recommended value for classification, i.e. m¼ ⌊

ffiffiffiffiffi
M

p
c, whereM is

the total number of features [23].
� k-NN: The optimal value of k¼15 derives from the leave-one-out cross-validation (LOOCV) method [33], where the usual

euclidean distance is used.

4.3.1. Cross-validation recognition rate
Recognition rates are computed for both RF and k-NN algorithms, for different values of the trust factor (Fig. 6). They

correspond to the ratio of the number of predicted labels to the number of true labels. Globally, RF outperforms k-NN up to
10% and is less sensitive to a slightly mislabeled library (Table 2).

4.3.2. CPU time tests
To perform speed tests, we need a lot of data, especially features, which can only be obtained artificially. Focus must be

made on the speed processing of the algorithms regarding the amount of data, not on the recognition rates. Thus, data sets
are built from random matrices using the randi(iMAX, N, M) Matlab function. Entries are integers in ½1;100�, the number
of rows N (signals) and columns M (features) is variable. Training and testing sets are ð4000�MÞ and ðN �MÞ matrices
respectively. There are four different classes, randomly assigned for each signal. The parameters for both RF and
k-NN algorithms are set according to the beginning of Section 4.3. The computer used is a Dell Vostro 640–Intel Core i7-2600
@3.40 GHz – 8Go RAM, runningWindows 7 Pro (64 bits) SP1. Results on those randomly generated data, for the testing phase,
are depicted in Figs. 7 and 8.

k-NN is globally linearly sensitive to the increase of the number of waveforms and the number of features whereas RF is
almost not influenced. During the testing phase, k-NN needs to compute many euclidean distances for each test sample
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Fig. 6. Recognition rates (%) on synthetic data for different Trust Factor values.

Table 2
Recognition rates (%) on synthetic data for both RF and k-NN algorithms.

Algorithm Trust Factor

60 70 80 90 100

RF 88.9 96.1 98.8 99.7 100.0
k-NN 79.0 88.9 94.6 97.2 99.2
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before assigning the predicted label whereas RF does not need to compute anything, each test sample is simply ran through
the Forest, hence the extremely fast decision process.
5. Application to real corrosion data

5.1. Corrosion experiments and monitoring

Experimental protocol to obtain crevice corrosion is described in detail in [14]. In the following, only the key points are
reminded. 17 experiments are conducted on 304L stainless steel. Samples are immersed in a corrosive solution (with dif-
ferent values of NaCl (2 g/L or 35 g/L), pH (6.7, 8.3 or 10.5) and temperature 25 °C or 50 °C). In average, each corrosion
experiment has been conducted twice under the same conditions. The pre-treatment (before immersion) of samples is
performed step by step as follows: Grind to 400, rinse, chemical passivation (20 vol.% HNO3 during 1 h, at room tem-
perature), dry in air. Stainless steel sheet is then assembled by two formers made by polymethyl methacrylate (PMMA). This
latter device allows two confined areas on both sides of the specimens in order to enhance crevice corrosion (Fig. 9). The
open circuit corrosion potential (OCP) is continuously recorded owing to a saturated calomel electrode (SCE) as a reference
(Fig. 10).

The AE acquisition system is a Mistras AEDSP embedded computer board. The sensors (R15) are applied on the surface of
the specimen, outside the corrosive solution (distance sensors/sample¼40 mm) (Fig. 10). R15 sensors have been chosen for
their good frequency sensitivity around 150 kHz. Sensor coupling is performed using vacuum grease. To ensure the
repeatability of the results, assembly torque is controlled using a dynamometric key and set to 3 Nm. Acquisition parameters
were set as follows: peak definition time (PDT)¼200 μs, hit definition time (HDT)¼400 μs and hit lockout time
(HLT)¼200 μs. Acquisition threshold depends on environmental noise, thus varying from 19 dB to 28 dB. An optimal
sampling frequency equals to 4 MSPS (and 4 K points per waveform) has been set as a very good compromise between the



Fig. 10. Experimental device.

Fig. 9. Crevice assembly and AE sensor mounting (dimensions in mm, SS: stainless steel).
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size of the data to process (real-time constraint) and the robustness of the extracted features (reliability constraint). Then, a
set of 30 features are extracted from recorded waveforms (Table 1).

The open circuit corrosion potential (OCP) is continuously recorded owing to a saturated calomel electrode (SCE) as a
reference (Fig. 10). This electrode is composed of metallic mercury (Hg) in contact with calomel (Hg2Cl2(s)), itself in
equilibrium with a KCl saturated solution. When saturated, its potential is fixed and can serve as reference; it constitutes a
half cell which allows measuring the OCP of the specimen which constitutes the second half cell.

Some experiments are performed with the addition of H2O2 in order to accelerate corrosion. The OCP drop shows that
crevice initiates as soon as H2O2 is added (Figs. 11 and 12). For the sake of illustration, an experiment presenting no cor-
rosion and performed at a higher temperature is depicted in Fig. 13.

5.2. Training and testing sets

In order to build various data sets, pH and temperature values, NaCl concentration and H2O2 addition are controlled to
obtain crevice corrosion for some experiments and no corrosion for the others. 13 out of 17 experiments (almost 75%) are
used for the training set. In absence of corrosion, OCP does not decrease (Fig. 13). However, even if there is no corrosion,
some AE activity is observed all along the experiment. These signals are attributed to noise (i.e. dilatation phenomena and
bubbles evolution within the liquid due to the temperature of the test (50 °C)). A first class (denoted as NC) is built from
1200 signals. Regarding the experiments involving crevice corrosion (Fig. 11), AE activity starts prior to the addition of H2O2,
and is mainly assigned to noise. After H2O2 addition, gathered signals are mainly assigned to corrosion and constitute a
second class (denoted as CC), composed of 1167 signals. It has to be noticed that this CC class is not pure and also contains



Fig. 12. Illustration of the corresponding crevice corrosion phenomenon on the sample.

0 20000 40000 60000
-0,15

-0,10

-0,05

0,00

0,05

0,10

 

O
C

P
 (V

S
C

E
)

Test Time (s)

304L
2g/L NaCl

0

200

400

600

800

1000

C
um

ul
at

iv
e 

hi
ts

Fig. 13. OCP and AE monitoring of a specimen without corrosion in 2 g/L NaCl, 50 °C.

0 1x105 2x105 3x105

-0,2

0,0

0,2

O
C

P
 (V

S
C

E
)

Test Time (s)

Corrosion 
 initiation

1,48*10 M H O  addition

Torque 3N*m

35g/L NaCl

0

50

100

150

200

C
um

ul
at

iv
e 

hi
ts

Fig. 11. OCP and AE monitoring of crevice corrosion in 35 g/L NaCl, accelerated by 1:48� 10�2 MH2O2 ;pH6:7, 25 °C.

N. Morizet et al. / Mechanical Systems and Signal Processing 70-71 (2016) 1026–1037 1035
noise signals. The previous study on the use of the ACM for altered data shows that recognition results are satisfactory even
if classes are altered up to 20%. Besides, since there is no class-privilege in real conditions, a special attention has been paid to
build a well-balanced training set, for a total of 2367 waveforms. The remaining four experiments are used to construct the
different testing sets. Two of them present no corrosion (namely NCa and NCb), the other two show crevice corrosion
(namely CCa and CCb), for a total of 1311 waveforms. Preprocessing and features extraction have been applied to all
waveforms, according to Section 2.



Table 3
RF classification results of the proposed method for NC and CC experiments.

Experiment Number of votes (%) NC class Number of votes (%) CC class Total number of signals (%) Decision rule

NCa 179 (76.8%) 54 (23.2%) 233 (100%) MV
103 (92.8%) 8 (7.2%) 111 (100%) SV

NCb 459 (95.6%) 21 (4.4%) 480 (100%) MV
410 (98.3%) 7 (1.7%) 417 (100%) SV

CCa 152 (34.9%) 283 (65.1%) 435 (100%) MV
89 (29.3%) 215 (70.7%) 304 (100%) SV

CCb 69 (42.3%) 94 (57.7%) 163 (100%) MV
40 (37%) 72 (64.3%) 112 (100%) SV
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5.3. Classification results

The percentage of signals for the Majority Voting (MV) rule is given regarding the original total number of signals of the
test set. The percentage of signals for the Security Voting (SV) rule is given regarding the number of remaining signals, after
the security threshold of 70% is applied.

For each test, the proper majority class has been recognized and results show that using SV leads to a reinforcement of
the usual MV decision, when it comes to assign signals to a specific class. Moreover, for each test case, most of the signals
corresponding to the minority class is discarded, thus strengthening the trend of the majority class. For instance, considering
the first no corrosion test (NCa), the percentage of rejected signals for the NC class is ð179�103Þ=179¼ 42:5% whereas the
percentage of rejected signals for the CC class is ð54�8Þ=54¼ 85:2% (Table 3).
6. Conclusions

A precise waveform preprocessing, including wavelet denoising, has been performed on acquired waveforms, leading to
normalized and cleaned signals. A new evaluation tool called the alter-class matrix (ACM) has been introduced to test the
robustness to mislabeled classes and speed tests have been conducted on both RF and k-NN algorithms. Then, application to
real corrosion data have been executed and classification results have been obtained with the software RF-CAM, developed
for this work. RF is pretty well suited with regard to the facing issues, it is very fast and less sensitive to a learning library
which may have been built incorrectly.

The results associated to the usual majority voting (MV) rule are satisfactory in terms of finding the proper majority class.
In order to take into account the industrial reliability constraint, another decision rule called security voting (SV) has been
implemented as a confidence level (set to 70%), and reinforces the final decision process taken by the MV. In average, signals
deriving from the minority class are twice as discarded as signals coming from the majority class.

Future prospects to be considered are the enlargement of the learning library in order to identify other corrosion
mechanisms such as pitting corrosion. Finally, this methodology which has been developed and validated at the laboratory
scale, can be applied at the industrial scale, provided that a consistent new learning library is constructed.
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